

and what makes it so special

รศ.พญ. นฤมล เด่นทรัพย์สุนทร นพ. เรืองวิทย์ ตันติแพทยางกูร

THE JOURNAL OF PEDIATRICS

MARCH 1972 Volume 80 Number 3

MEDICAL PROGRESS

Intravenous alimentation in pediatric patients

William C. Heird, M.D.,* John M. Driscoll, Jr., M.D., John N. Schullinger, M.D.,

Burton Grebin, M.D.,** and Robert W. Winters, M.D.,*** New York, N.Y.

Heird WC, et al (1972)

https://www.flickr.com/photos/hudsopthego/15703326/00-27

Pediatric Population

- DiversityGrowth / development
- Plasticity
- > Vulnerability
- ➤Tailor-made nutrition
- ➤Tailor-made preparation

Nutrients are essential in providing energy and substrates for GROWTH AND DEVELOPMENT

Pediatric PN

To support normal growth and development in case of digestive system malfunction

Compared to adults

- Higher probability and more urgency of needing PN
- ➢ Probably longer use of PN
- More specific in terms of nutrient types and requirements

When to Start

>Whenever

>A child needs nutritional support

AND

Oral/enteral feeding cannot fulfill his/her nutritional requirements

When to Start

> Whenever

- A very low birth weight infant (<1500 g) cannot feed via GI tract in the first day of life
- An infant cannot adequately feed via GI tract in 1-3 days
- A small child cannot adequately feed via GI tract in 4-5 days
- An adolescent cannot adequately feed via GI tract in 7-10 days

Potential Usage

- Extreme prematurity
- Premature infants
 - Small bowel ischemia, NEC
 - > Omphalocele, gastroschisis, GI atresias
- Non-functional GI tract
 - Obstruction, ileus, chronic intractable diarrhea, malabsorption syndrome, short-bowel syndrome
- Severe malnutrition
- Impracticality of enteral feeding
- Vastly increased requirements

Burns, multi-organ failure

https://www.uptodate.com/contents/image?imageKey=PEDS%2F90425&top icKey=PEDS%2F15634&source=see_link

Physiology of PN >Bypass of nutrients through gut and liver Absence of direct nutrient for enterocytes Deficient and relatively imbalanced nutrients Abnormally present nutrients

Physiologic Effects

- Thinning of GI mucosa and blunting of villi
- Understimulation of gut hormones, bile, and pancreatic secretions
 Undermotility of gut
 Underfeeding or overfeeding of nutrients
- Lack of hunger and eating skills

Kudsk KA(2003); Gahagan S (2012); Kaji T, et al (2002)

PN Advantages Supply of nutrients without using gut \rightarrow life saving

PN Disadvantages

>Abnormal physiology ➢Risk of imbalanced nutrients ➢Risk of infection \succ Complicated than enteral feeding \rightarrow requiring special knowledge of care ➤ Expensive

https://pixabay.com/en/justice-measure-scale-silhouette-1296381/

https://pixabay.com/en/justice-measure-scale-silhouette-1296381/

Specific Considerations

➢ Patient stability ► Vascular access Pediatric nutritional assessment Pediatric PN preparations >Other challenges specific to pediatric patients

Patient Stability

Hemodynamic stability

Nutrients are not properly utilized without stable hemodynamics

Fluid-electrolyte stability
 Relatively large amount of fluid is essential for PN

Precautions in patients with electrolyte, cardiac, renal, or hepatic compromises

DO NOT start PN if the patient is hemodynamically unstable D-RT

Vascular Access > Peripheral VS central venous access \succ Central lines \rightarrow distal tip lying in the end of superior vena cava or the right atrium >Osmolarity of the preparations = >(100 x amino acids in g/dL) +>(50 x glucose in g/dL) + \geq (2 x NaCl in mEq/L) + $>(2 \times KCl in mEq/L) +$ >(1.4 x Ca-gluconate in mEq/L)≻In mOsm/L

Krzyuda EA, et al (2007); Baker RD, et al (2001)

Catheter Tail with Cap

PICC Catheter

https://commons.wikimedia.org/wiki/File:Blausen_0193/Gatheter_PIC
C.png

Osmolarity Estimation

- A one-year-old, 10-kg boy
- Energy requirement 800 kcal, fluid requirement 1000 mL
- GIR 8.5 mg/kg/min (420 kcal), amino acid 20 g/day (80 kcal), lipid 30 g/day (300 kcal), in NSS/4 1000 mL, with 20 mEq of KCl

• = 200 + 612 + 77 + 40 = 929 mOsm/L

Nutritional Assessment

To determine energy and protein requirements

≻Measures

History and physical examination

Anthropometry

Disease conditions and complications

Laboratory tests

Tailor-made TPN orders for the patient
To follow up the results of treatment

Parameter	Suggested frequency	
	Initial/hospitalized	Follow up/home
Growth		
Weight	Daily	Daily to monthly
Height	Weekly	Weekly to monthly
Head circumference	Weekly	Weekly to monthly
Triceps skin fold	Monthly	Monthly to annually
Mid arm muscle circumference	Monthly	Monthly to annually
Serum*		1
Electrolytes	Daily to weekly	Weekly to monthly
BUN, creatinine	Weekly	Monthly
Calcium, phosphorus, magnesium	Twice weekly	Weekly to monthly
Acid-base status (venous bicarbonate)	Until stable	Weekly to monthly
Albumin	Weekly	Weekly to monthly
Prealbumin [¶]	Weekly	Monthly
Glucose	Daily to weekly	Weekly to monthly
Triglycerides	Daily while increasing lipid	Weekly to monthly
Liver function tests (AST, ALT, GGTP and alkaline phosphatase)	Weekly	Weekly to monthly
CBC and differential	Weekly	Weekly to monthly
Platelets	Weekly	Weekly to monthly
PT, PTT, INR	Weekly	Weekly to monthly
Iron indices $$	As indicated	Biannually to annually
Trace elements	As indicated	Biannually to annually
Fat soluble vitamins [®]	As indicated	Biannually to annually
Carnitine	As indicated	As indicated
Ammonia	As indicated	Biannually to annually
Blood culture from central venous	As indicated	Biannually to annually
catheter		
CRP or ESR.	As indicated	As indicated
LEMEQSE FEDSOZE 13034	2 LO 6 TIMES/day	ратту со меекту

Pediatric Preparations

- Specific nutrient requirements vary from patient to patient, quantitatively and qualitatively
 - ≻Fluid
 - ≻Energy & CHO
 - > Protein
 - Micronutrients
- Pediatric PN products must be specifically chosen and prepared
 - ➤Amino acid
 - ≻Lipid
 - Vitamin and trace elements

Amino Acid Solutions

Extremely high amino acid requirements per kg of body weight in younger children

Critical period of amino acid delivery
 Conditionally essential amino acids → arginine, cysteine, tyrosine, histidine
 First-pass metabolism at the gut → glutamate

Lipid Emulsions

Higher percentage of lipid energyEssential fatty acid deficiency

 ≻Hyperbilirubinemia
 ≻Lipid intolerance → hypertriglyceridemia
 ≻Fat overload syndrome

>PN-associated liver disease

Ready-to-use PN preparations are **NOT APPROPRIATE** for use in younger children ND-27

Specific Challenges

- Fluid estimation
- >Overfeeding
- ➤ Calcium & phosphorus precipitation
 ➤ Multivitamins
 ➤ Trace elements → iron

What to Be Covered

- Estimation of requirements
- Choosing preparation
- The calcium-phosphorus dilemma
- >Trace elements \rightarrow iron and zinc
- VitaminsPediatric PN tips

Fluid Requirement

- Fluid requirement depends on
 - Hydration status
 - ≻Size
 - ≻Age

 ➢ Environmental factors → radiant warmer, conventional single-walled incubator, and phototherapy, heat shield, thermal blanket, double-walled incubator
 ➢ Underlying diseases

Fluid Requirement

- Excessive fluid may be necessary to provide adequate calorie (a peripheral vein) but care must be given to avoid fluid overload
- Highly concentrated glucose solution and 20% lipid emulsion are used to decrease fluid volume
- PN must NOT be used to replace ongoing loss because the fluid contains not just electrolytes but protein, vitamins, and minerals

Initial volume for patients free of cardiovascular or renal disease	Volume
< 10 kg	100 mL/kg/d
10-30 kg	2,000 mL/m ² /d
30-50 kg	100 mL/h (2.4 L/d)
> 50 kg	124 mL/h (3 L/d)

Volume can be increased by

10 mL/kg/d in infants until the desired caloric intake is achieved (max. 200 mL/kg/d, if tolerated)

> 10 kg: by 10% of initial volume per day until desired caloric intake is achieved (max. 4,000 mL/m2/d, if tolerated)

Energy Requirement

Age(yr)	Parenteral energy (kcal/kg/day)
Preterm	110-120
0-1	90-100
1-7	75-90
7-12	60-75
12-18	30-60

Nonprotein Energy

- ➤ Nonprotein calorie (NPC) → combined energy from lipid and carbohydrate
- ➢ NPC:N ratios → to describe the balance between energy and protein in specific clinical conditions
- ➤ The concept is still debatable, perhaps outdated
 ➤ NPC:N = 150:1 200:1 kcal/g of N
 → CHO:fat:prot = 45-55:35-40:10-15 (%)
- Basic principles: the balance of macronutrients
 Minimum and maximum glucose infusion rates
 - Minimum and maximum fat emulsion
 - Adequate amino acids

Shulman RJ, et al (2003); Skipper A, et al (2005); Rugeles SJ, et al (2017)

- D-glucose, monohydrate form (dextrose), 3.4 kcal/g
- Most of the osmolality in the PN solution comes from glucose
- Peripheral PN concentration with >10% glucose increases the risk of phlebitis
- Glucose concentration no more than 10-12.5% (wt/vol) can be used for peripheral infusion

Dextrose concentration (%)	Osmolality (mOsm/kgH ₂ O)	Energy (kcal/L)
5	278	170
10	523	340
15	896	510
20	1,250	680
25	1,410	850
30	1,569	1,020

>20% dextrose solution \rightarrow 0.68 kcal/mL >20% lipid emulsion \rightarrow 2 kcal/mL

- ➢Glucose infusion rate (GIR)
 - Start 5 (or 4-7) mg/kg/min (VLBW 3-5)
 - Advance 2-5 mg/kg/min
 - ≻Maximum
 - ➢ Preterm 8 mg/kg/min (11.52 g/kg/day)
 ➢ Term 2 year 13 mg/kg/min (18.72 g/kg/day)
 ➢ Children 5 mg/kg/min (7.2 g/kg/day)
 ➢ Adult 2 mg/kg/min (2.88 g/kg/day)
 ➢ In cyclical PN 20 mg/kg/min (28.8 g/kg/day)

- Initiate in a stepwise fashion to allow appropriate response of endogenous insulin
- A balanced CHO + Lipid as non-nitrogenous calorie may avoid
 Hepatic fatty infiltration
 Water retention
 Higher CO₂ production

➢Glucose infusion rate (GIR) should not exceed endogenous glucose production rate (or glucose oxidation rate) → overfeeding of glucose

Endogenous glucose production rate is maximum at postnatal age and decreases gradually with age

 CHO should provide 45-50% of total energy intake in infants and children
 CHO intake should provide 60-75% of

non-protein calorie

Fat provides energy in order to reduce dextrose infusion to equal or less than maximal rate of glucose oxidation

Koletzko B, et al (2005)

Protein

➢Crystalline amino acid (AA) solution Lower pH of AA solution allows larger amounts of Ca and P to be added to the PN solution without precipitation Growth (weight & height gain and nitrogen retention) ≻Taurine ≻Cysteine

Protein Requirement

Age group	Protein (g/kg/d)
Preterm	2.5-3.5
Full term	
0-6 months	2.5-3.0
6-12 months	2.0-2.5

Neonates: start AA at 1.5-2.5 g/kg/d and increase to the desired goal

Protein Requirement

Age (yr)	Protein (g/kg/d)
1-6	1-2
7-10	1-2
11-14	1-2
15-18 (boys)	0.9-2
15-18 (girls)	0.8-2

In older infants and children, AA is started at the goal dose except in hepatic or renal insufficiency or disorders of protein metabolism

Protein in Neonates

- Parenteral protein is usually started on the 1st or 2nd day of life
- Most preterm infants tolerate 1.5-2 g/kg/d of parenteral amino acids in the first day of life
- To achieve intrauterine rate of protein deposit, the upper limits of protein intake is
 3 g/kg/d for term infants
 - >4 g/kg/d for preterm infants

Porcelli Jr PJ, et al (2002)

	Aminoven Infant 10%	Aminoven 10%	Aminoplasmal 10%	Aminoplasmal 15%	Amiparen 10%	Aminoleban 8%
EAA (%) (w/w)	56.5	41	44.85	37.7	59	51.6
BCAA (%) (w/w)	30	18.6	20.1	16.3	30	35.5
Na (mmol/L)	-	-	_	_	2	14
K (mmol/L)	-	-	_	_	_	-
Cl (mmol/L)	-	-	_	_	_	94
Mg (mmol/L)	_	_	_	_	_	_
H ₂ PO ₄ (mmol/L)	_	_	_	_	_	_
Acetate (mmol/L)	_	_	28	_	120	_
					TD-	RT

	Aminoven Infant 10%	Aminoven 10%	Aminoplasmal 10%	Aminoplasmal 15%	Amiparen 10%	Aminoleban 8%
Threonine	0.44	0.44	0.42	0.54	0.57	0.45
Tryptophan	0.20	0.20	0.16	0.21	0.2	0.07
Lysine	0.85	0.66	0.68	0.79	1.05	0.61
Leucine	1.30	0.74	0.89	1.14	1.4	1.1
Valine	0.90	0.62	0.62	0.72	0.8	0.84
Isoleucine	0.80	0.50	0.5	0.58	0.8	0.9
Methionine	0.31	0.43	0.44	0.57	0.39	0.1
Phenylalani ne	0.38	0.51	0.47	0.57	0.7	0.1
Histidine	0.48	0.30	0.30	0.52	0.5	0.24

	Aminoven Infant 10%	Aminoven 10%	Aminoplasmal 10%	Aminoplasmal 15%	Amiparen 10%	Aminoleban 8%
Cysteine	0.052	-	-	0.03	0.1	0.03
Arginine	0.75	1.2	-	1.6	1.05	0.6
Taurine	0.04	0.1	-	-	-	-
Tyrosine	0.42	0.04	0.4	0.05	0.05	-)
Alanine	0.93	1.4	10.5	2.23	0.8	0.75
Aspartic acid	_	_	5.6	0.79	0.1	_
Glutamic acid	_	_	7.2	1.62	0.1	_
Glycine	0.415	1.1	12	1.92	0.59	0.9
Proline	0.971	1.12	5.5	0.73	0.5	0.8
Serine	0.767	0.65	2.3	0.30	0.3	0.5
					100-	KI

 ≻Lipid emulsion → oil-in-water emulsion with 10% or 20% TGs
 >Different types of TGs (LCT, MCT, SL)
 >Different values & ratios of n-3, n-6 and n-9 FAs

Content of EFAs mostly from soybean oil

➢ Egg yolk PLs as emulsifier >Osmolality: \sim 300-400 mOsm/kg H₂O ➤Size of lipid droplets similar to size of natural lipid droplets in blood & its mean diameter ~0.3 µm ≻High caloric density: 10% ~ 1 kcal/mL, 20% ~ 2 kcal/mL

Soybean oil is the usual source of fatty acids in parenteral fat emulsion ➤MCTs have been suggested as an alternative lipid source Cleared faster from plasma Metabolized more rapidly Oxidized mainly independently of carnitine Less reticuloendothelial dysfunction than I CTS

Lipid emulsions are recommended as a supplemental caloric source, for the prevention and treatment of essential fatty acid deficiency (linoleic and a-linolenic acids), and modification of inflammation in patients receiving TPN

To prevent EFA deficiency a minimum linoleic acid intake of

>0.25 g/kg/day in preterm infants

>0.1 g/kg/day in term infants and older children

Maximum doses of parenteral lipid
 Infants: 3–4 g/kg per day
 Older children: 2–3 g/kg per day

Age	Starting dose (g/kg/day)	Daily dose increase (g/kg/day)	Maximum dose (g/kg/day)
Preterm	0.5-1.0	1.0	3.5
Full term (0-6 mo)	1.0-1.5	1.0-1.5	3.5
Older infants (6-12 mo)	1.0-1.5	1.0-1.5	3.0
Children (1-10 yr)	1.0	1.0-1.5	3.0
Adolescents (11-18 yr)	1.0	1.0	2.0-3.0

Soybean Oil-based IVLE

Proinflammatory cytokines synthesized from the n-6 family member, AA, which may promote liver inflammation

➤ Arachidonic acid: a precursor of proinflammatory eicosanoids → thromboxane A2, leukotrienes B4 and C4, prostaglandin E2; and can induce production of proinflammatory cytokines (TNF-a, and IL-6)

Tilley SL, et al (2001); Hayashi N, et al (1998); Wachtler P, et al (1997); Deshpande G, et al (2011)

Chang MI, et al (2012)

ω-3 FA Precursors

ω-6 FA Precursor

Chang MI, et al (2012); Adolph M, et al (2009)

SMOFlipid

A higher n-3/n-6 FA ratio reduces the production of hepatotoxic proinflammatory cytokines

Reduced amount of soybean oil with decreased phytosterol load

SMOFlipid

➢ Higher amount of a-tocopherol to counteract free radical generation from the number of double bonds in EPA and DHA → decreased lipoperoxidation

>Increased availability of a-tocopherol in SMOFlipid relative to less antioxidative γ -tocopherol \rightarrow decreased hepatic lipoperoxidation injury

Product	Intralipid/	ClinOleic	SMOFlipid
	Otsulip		
Oil Source (g)			2 . 1 . 1
Soy bean	10	2	3
Safflower	0	0	0
MCT	0	0	3
Olive oil	0	8	2.5
Fish oil	0	0	1.5
α-Tocopherol (mg/L)	38	32	200
Phytosterols (mg/L)			
	348 +/- 33	327 +/- 8	47.6
Fat composition			
Linoleic	5.3	1.9	1.9
a-linolenic	0.8	0.2	0.2
EPA	0	0	0.3
DHA	0,00	0 84	0.2
Oleic	2.4	6.2	2.9
Palmitic	1,1	1.2	0.9
Stearic	0.4	0.2	0.3
Arachidonic	0	0.05	0.05
			100 000
			D-KI

Le HD, et al (2010)

	Soy- based	Olive oil- based	MCT/LCT	Fish oil mixture
Longterm/ home TPN	+	+	+	
Hyper inflammation		+	+	+
Cholestasis		+	+	++
Critically ill disease		+	+	+
		1	-7/	n n n

ND-R7

Electrolytes and Minerals

Electrolytes & Minerals	Unit	Daily amount
Sodium	mEq/kg	2-4
Potassium	mEq/kg	2-3
Chloride	mEq/kg	2-3
Acetate	mEq/kg	1-4
Calcium gluconate	mg/kg	50-500
Phosphate	mM/kg	0.5-2
Magnesium	mEq/kg	0.25-0.5
Calcium and Phosphate

	Calcium gluconate (mg/kg/d)	Phosphate (mM/kg/d)
Premature infants	300-500	1-1.5
Full term infants	300-400	1-1.5
Older infants & children	100-200	1.0
Adolescents	50-100	0.5-1.0
· · · · ·		

Duggan C, Nutrition in Pediatrics 4th edition (2008)

The Ca-P Dilemma ≻The unique problem of pediatric PN ➢Free Ca meets free phosphate, AND THEY DO PRECIPITATE >Avoid precipitation and you may not get adequate amount of both elements

The Ca-P Dilemma Determining factors of solubility / precipitation Types and amounts of calcium and phosphate >Mixing order ➢pH of the PN solution

The Ca-P Dilemma Determining factors of solubility / precipitation (cont.) ≻Temperature ➤Standing time >A presence of lipid emulsion

The Ca-P Dilemma

➤Ca gluconate better than other Ca salts Mixing phosphate before Ca \succ Lower pH \rightarrow less precipitation >Amino acids and dextrose conc. \succ Higher temp \rightarrow more precipitation >Lipid emulsion (in 3-in-1 prep) \rightarrow higher pH and less visibility

The Ca-P Dilemma

>Avoiding precipitation

- ➢ Alternate bags → suboptimum retention of both elements
- ➤Using tools and skills
 - ≻Equations
 - Solubility curves
 - ➢Visual inspection

New phosphate preparation

Ca-P Equation

Calcium (mEq/L) * Phosphate (mmol/L) * 1.8 <300

- > 10% Calcium gluconate
 - > 1 mL = 9 mg elemental Ca = 0.46 mEq Ca = 0.23 mmol Ca
- > K_2 HPO₄ (1.74 g/20 mL)
 - > 1 mL = 15.5 mg elemental phosphorus = phosphate ion 0.5 mmol

The safe values serve only as guidelines to what calcium and phosphate concentrations in PN formulas are not associated with precipitation but are not absolute since many factors affect the product

2%Aminosyn, 20%Dextrose, pH 5.1

1%Aminosyn, 10%Dextrose, pH 5.4

- White milky solution with fine particulate matter
- Gradually settle to the bottom of the container
- Seen immediately after mixing, or require 12-24 hr for precipitation occurs

Organic Phosphate

- Glycerophosphate is not ionizable, precipitation of Ca-P does not occur
 Phosphate: 1 mmol/mL
 Na: 2 mmol/mL
 Higher price than K₂HPO₄
 Dosage:
 - Adults 10-20 mmol/d
 - Infants 1.0-1.5 mmol/kg BW

Rodell O, et al (1989)

Organic Phosphate (Pediatric Ranges)

Admixture	Range	Unit
Amino acid (Aminoven Infant®)	6.5-36.9	g/L
Glucose	40-240	g/L
Sodium	0-100	mmol/L
Potassium	0-100	mmol/L
Magnesium	0-5	mmol/L
Calcium	0-15	mmol/L
Phosphate (Glycophos®Na glycerophosphate)	0-15	mmol/L
Peditrace®	0-15	ml/L
Soluvit N®	0-1	vial
	11.1	1- 5-1

Fresenius Kabi Admixture Guide (2007)

Electrolyte and Mineral Contents in Products

		Contents
NaCl, 3%	Na 0.513 mEq/mL	Cl 0.513 mEq/mL
Na acetate, 24.6%	Na 3 mEq/mL	
KCl, 15%	K 2 mEq/mL	Cl 2 mEq/mL
К ₂ НРО ₄ , 8.71%	K 1 mEq/mL	Phosphate 1.5 mEq/mL Phosphate 0.5 mmol/mL P 15.5 mg/mL
Sodium glycerophosphate	Na 2 mmol/mL	Phosphate 1 mmol/mL
MgSO ₄ , 50%	MgSO ₄ 500 mg/ml Mg 4 mEq/mL Mg 49.2 mg/mL	
Ca gluconate, 10%		Ca 0.45 mEq/mL Ca 0.23 mmol/mL Ca 9 mg/mL

Trace Elements

	Unit	Preterm	Term newborns	Infants	Children
Iron	mg/kg/d for PN >2 months	0.1-0.2	0.25-0.67	0.05-0.1	0.05-0.1 (max 1 mg/d)
Zinc	mg/kg/d	0.4	0.25	0.25 < 3 months 0.1 > 3 months	0.05 (max 5 mg/d)
Manganese	µg/kg/d	1	1	1	1 (max 50-100 μg/d)
Copper	µg/kg/d	20	20	20	20 (max 500 μg/d)
Chromium	µg/kg/d	0.05-0.2	0.2	0.2	0.2 (max 5-15 μg/d)
Selenium	µg/kg/d	5-7	2	1-3	1-3 (max 30-60 μg/d)
Molybdenum	µg/kg/d	0.25	0.25	0.25 (max 5 µg/d)	0.25 (max 5 μg/d)
Iodine		1 µg/kg/d	0-1 µg/kg/d	0-1 µg/d	1 μg/d

Trace Elements

➤Trace elements should be supplemented in long-term PN ➤There is no trace element supplement for long-term PN which meets the current recommendations

Iron

- Instability of total nutrient admixtures containing iron has prevented its addition to TE mixtures
- For patients not able take oral iron supplements, addition of iron dextran to fat-free PN or separate infusions of IV iron have been recommended
- Iron is probably not needed in some patients

Zinc

Zinc is included in all the current parenteral trace element products

- Zinc: not more than 10 mg/L
- Extra supplementation of zinc may be needed in patients with
 - > Diarrhea
 - ≻GI fistula
 - Severe burns
 - Preterm infants with NEC esp. in the presence of bowel resection or ileostomy

TE Preparations

	Unit	Addamel	Peditrace	Siriraj
	per 1 mL			
Iron (Fe)	mcg	112	-	-
Zinc (Zn)	mcg	650	250	1000
Manganese (Mn) [#]	mcg	27	1	-
Copper (Cu) [#]	mcg	130	20	400
Chromium (Cr)*	mcg	1	-	-
Selenium (Se)*	mcg	3.2	2	-
Molybdenum (Mo)*	mcg	1.9	-	-
Fluoride (F)	mcg	95	57	-
Iodine (I)	mcg	13	1	-
Sorbitol	mg	300	-	-
Volume in vial	mL	10	10	10
Price	Baht	310	235	36
Dosage	mL/kg; maximum	1; 10	1; 15	-

Vitamins

≻Soluvit N

>Infants <10 kg \rightarrow 1/10 vial/kg/day \succ Children \geq 10 kg or adults \rightarrow 1vial/day Solvent: Vitalipid N, lipid emulsion, water, 5-50% glucose solution for infusion Vitalipid N >BW \geq 2.5 kg \rightarrow 4 mL/kg, max 10 mL Otsuka MV \succ For adults (AMA: children >11 yr & adults)

Water-soluble vitamins (dry powder, vial)	Otsuka MV No.1 (mg)	Soluvit N (mg)	
Thiamin, B1	3.1	2.5	
Riboflavin, B2	3.6	3.6	
Pyridoxine, B6	4	4	
Cyanocobalamin, B12	0.005	0.005	
Nicotinamide, B3	40	40	
Pantothenic acid, B5	15	15	
Biotin	0.06	0.06	
Folic acid	0.4	0.4	
Ascorbic acid, C	100	100	
Lipid-soluble vitamins (solution)	Otsuka MV No.2 (4 ml/ampoule)	Vitalipid N Infant (10 ml/ampoule)	Vitalipid N Adult (10 ml/ampoule)
Vitamin A	3300 IU	2300 IU	3300 IU
Vitamin D	Cholecalciferol (D3), 200 IU	Ergocalciferol (D2), 400 IU	Ergocalciferol (D2), 200 IU
Tocopherol, E	10 mg	6.4 mg (7 IU)	9.1 mg (10 IU)
Phytomenadione, K1	2 mg	0.2 mg	0.15 mg

Pediatric PN Tips >In neonatal and pediatric patients, the PN regimen must be tailored to the age of the patient and diagnosis because nutrition needs vary greatly from birth through adolescence

>PN in preterms \rightarrow the earlier, the better

- Early administration of parenteral amino acids, within hours of birth, has been observed to be safe
- Data suggest safety and improved nitrogen balance from provision of nonprotein energy within the first day
- Essential fatty acid deficiency develops in as few as 3 days in neonates fed fat-free diets

- Shielding PN from light may improve survival rate in premature infants
 - > Meta-analysis, 4 trials, 800 newborn premature infants
 - Mortality in the light-protected group was half of that in the light-exposed group and twice as high in males compared with females

Adequate light protection may not be feasible, depending on the circumstance of whether PN is compounded on-site or at a central location

Chessex P, et al (2002)

- >PN-associated problems
 - Vascular device-related problems
 - ➤Infection
 - ≻Thrombosis
 - Metabolic bone disease
 - Hepatobiliary disease
 - Micronutrient deficiencies

Modify the PN prescription as indicated per ongoing evaluation of GI function, nutrition status, and growth

Wean PN when oral intake and/or EN achieves 50-75% of requirements for energy, protein, and micronutrients
 Unless impaired GI function precludes 100% absorption of nutrient needs

Worthington P, et al (2017)

ฝ่ายเภสัชกรรม โรงพยาบาลศิริราช Pharmacy Department Siriraj Hospital

TPN & FAT Calculator TPN Unit Call 99809, 99810, 99890

General	
ชื่อแพทย์	เบอร์ติดต่อกลับ
A	1234
หอผู้ป่วย	วันที่ต้องการสั่ง
	▼ 2017-08-02
ชื่อผู้ป่วย	Body Weight (kg)
ด.ช.	6.3
Central Line	

Total Parenteral Nutrition Requirements					
Total Volume (ไม่เผือสาย)	Drip in (hr)				
530.2	24				
	(Drip	in 24hr) TF	'N Rate:	22.1	mL/hr
50% Glucose		20	%	212.08	mL
10% AminoVEN INFANT (Newborn Amino Acid)	•	1	g/kg	63	mL
สั่ง Phosphate จากแหล่งดังต่อไปนี้					
Glycophos (phosphate = 2 mEq/mL, Na = 2 mEq/mL)	•				
ต้องกา	5 Phosphate	2.2	mEq/kg	6.93	mL

Summary	7			
Total Volume	530).20 + 0.106	mL	
SWI		200.91	mL	
GPR		11.69	mg/kg/min	
NPC : N		597 : 1	Kcal/g	
K _{total}		2.0	mEq/kg/day	
Na _{total}		6.5	mEq/kg/day	
K _{rate}		0.08	mEq/kg/hr	
Osmolarity $_{TPN}$		1,331.8	mOsm/L	
Osmolarity FAT		287.1	mOsm/L	

ฝ่ายเภสัชกรรม โรงพยาบาลศิริราช Pharmacy Department Siriraj Hospital

	ผู้ป่วยจะได้รับ Na	2.2	mEq/kg		
15% KCI (2 mEq/mL)		2	mEq/kg	6.3	mL
20% NaCl (3.42 mEq/mL)		0.2	mEq/kg	0.368	mL
40.8% Sodium Acetate (3 mEq/mL)		4.1	mEq/kg	8.61	mL
10% Calcium Gluconate (100 mg/mL)		3] mL/kg	18.9	mL
50% MgSO4 (500 mg/mL)		0.08	mL/kg	0.5	mL
Peditrace (1 mL/kg/day; Max 15 mL)				6.3	mL
Soluvit N (1 mL/kg/day; Max 10 mL)			[6.3	mL
Heparin (1 U/ 1 mL TPN)				0.106	mL
Other Nutrition	-		[mL	mL
Other Nutrition (key in)				mL	mL
Sterile Water				200.91	mL
Total Volume				530.31	mL

Summary			
Total Volume	530.20 + 0.106	mL	
SWI	200.91	mL	
GPR	11.69	mg/kg/min	
NPC : N	597:1	Kcal/g	
K total	2.0	mEq/kg/day	
Na _{total}	6.5	mEq/kg/day	
K rate	0.08	mEq/kg/hr	
Osmolarity TPN	1,331.8	mOsm/L	
Osmolarity FAT	287.1	mOsm/L	

W WALLDOAL /A -F-/1-

ฝ่ายเกสัชกรรม โรงพยาบาลศิริราช Pharmacy Department Siriraj Hospital

20% SMOF	•	3 g/kg	94.5	mL
Vitalipid N Infant (4 mL/kg/day; Max 10 mL)	•		10	mL
ัสอาจารย์ที่มีสิทธิ์สั่งใ ช้	Drip in (hr)			
รหัสและช็ออาจารย์ที่มีสิทธิ์สังใช้ 20% SMOF	24			
	(Drip i	n 24hr) Fat Rate:	4.4	mL/hr
กรุณากดปุ่ม แสดงใบสั่ง ทุกครั้งเมื่อมีการแก่ แสดงในสั่ง	า๊ไข			
 กรุณากดปุ่ม แสดงใบสั่ง ทุกครั้งเมื่อมีการแก่ แสดงใบสั่ง เริ่มสั่งใหม่ PN & FAT Report เนื่องจากระบบ P-Net จำกัดปริมาณตัวอักษร 500 ตัวอ์ ยังมีจำนวนดัวอักษรเกิน 500 ให้พิจารณาปรับแก้ไข เท่ ไม่จำเป็นออกไป 	ัไข วักษร จึงจำเป็นต้องแยะ ขื่อลดปริมาณตัวอักษรเล	i TPN และ Fat ออกเป็นสองร ง โดยอาจจะลบข้อมูลหอผู้ป่	ายการ หากค วยออก หรือส	้ำสั่ง ส่วนที่

ລດ dextrose, ລດ lipid, ເพົ່ມ Amino acids --> patient

Total Volume	530.20 + 0.106	mL
SWI	200.91	mL
GPR	11.69	mg/kg/min
NPC : N	597 : 1	Kcal/g
K total	2.0	mEq/kg/day
Na total	6.5	mEq/kg/day
K _{rate}	0.08	mEq/kg/hr
Osmolarity TPN	1,331.8	mOsm/L
Osmolarity FAT	287.1	mOsm/L
nergy = ?	Kcal/k	(57+30+4=
HO:Fat:A	mino a	acids = ? %kc

Magnesium = ? mEq/kg

